176 research outputs found

    Lo strumento del mansionario come procedura per la gestione della sicurezza sul lavoro: il caso Waste Recycling S.p.A.

    Get PDF
    In questo lavoro di tesi viene evidenziata l’importanza dello strumento del mansionario nel processo di gestione della sicurezza in azienda e viene di conseguenza presentato un nuovo modello di strutturazione di questo documento in tale ottica

    La pianificazione strategica come strumento di supporto alla direzione aziendale: il Business Plan della Cooperativa ATI

    Get PDF
    L’elaborato in analisi assume il ruolo di documento di programmazione dell’attività, andando così a supportare il managment societario nel giudizio sulle azioni pianificate e nella valutazione delle criticità con un occhio di riguardo alla situazione dei competitors

    Aeromonas hydrophila strains as biocatalysts for transglycosylation

    Get PDF
    Microbial transglycosylation is useful as a green alternative in the preparation of purine nucleosides and analogues, especially for those that display pharmacological activities. In a search for new transglycosylation biocatalysts, two Aeromonas hydrophila strains were selected. The substrate specificity of both micro-organisms was studied and, as a result, several nucleoside analogues have been prepared. Among them, ribavirin, a broad spectrum antiviral, and the well-known anti HIV didanosine, were prepared, in 77 and 62% yield using A. hydrophila CECT 4226 and A. hydrophila CECT 4221, respectively. In order to scale-up the processes, the reaction conditions, product purification and biocatalyst preparation were analyzed and optimized.Fil: Nóbile, Matías Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Terreni, Marco. Universita degli Studi di Pavia; ItaliaFil: Lewkowicz, Elizabeth Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Iribarren, Adolfo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad Nacional de Quilmes; Argentin

    New active site oriented glyoxyl-agarose derivatives of Escherichia coli penicillin G acylase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immobilized Penicillin G Acylase (PGA) derivatives are biocatalysts that are industrially used for the hydrolysis of Penicillin G by fermentation and for the kinetically controlled synthesis of semi-synthetic β-lactam antibiotics. One of the most used supports for immobilization is glyoxyl-activated agarose, which binds the protein by reacting through its superficial Lys residues. Since in <it>E. coli </it>PGA Lys are also present near the active site, an immobilization that occurs through these residues may negatively affect the performance of the biocatalyst due to the difficult diffusion of the substrate into the active site. A preferential orientation of the enzyme with the active site far from the support surface would be desirable to avoid this problem.</p> <p>Results</p> <p>Here we report how it is possible to induce a preferential orientation of the protein during the binding process on aldehyde activated supports. A superficial region of PGA, which is located on the opposite side of the active site, is enriched in its Lys content. The binding of the enzyme onto the support is consequently forced through the Lys rich region, thus leaving the active site fully accessible to the substrate. Different mutants with an increasing number of Lys have been designed and, when active, immobilized onto glyoxyl agarose. The synthetic performances of these new catalysts were compared with those of the immobilized wild-type (wt) PGA. Our results show that, while the synthetic performance of the wt PGA sensitively decreases after immobilization, the Lys enriched mutants have similar performances to the free enzyme even after immobilization.</p> <p>We also report the observations made with other mutants which were unable to undergo a successful maturation process for the production of active enzymes or which resulted toxic for the host cell.</p> <p>Conclusion</p> <p>The desired orientation of immobilized PGA with the active site freely accessible can be obtained by increasing the density of Lys residues on a predetermined region of the enzyme. The newly designed biocatalysts display improved synthetic performances and are able to maintain a similar activity to the free enzymes. Finally, we found that the activity of the immobilized enzyme proportionally improves with the number of introduced Lys.</p

    Biocatalyzed synthesis of glycostructures with anti-infective activity

    Get PDF
    Molecules containing carbohydrate moieties play essential roles in fighting a variety of bacterial and viral infections. Consequently, the design of new carbohydrate-containing drugs or vaccines has attracted great attention in recent years as means to target several infectious diseases. Conventional methods to produce these compounds face numerous challenges because their current production technology is based on chemical synthesis, which often requires several steps and uses environmentally unfriendly reactants, contaminant solvents, and inefficient protocols. The search for sustainable processes such as the use of biocatalysts and eco-friendly solvents is of vital importance. Therefore, their use in a variety of reactions leading to the production of pharmaceuticals has increased exponentially in the last years, fueled by recent advances in protein engineering, enzyme directed evolution, combinatorial biosynthesis, immobilization techniques, and flow biocatalysis. In glycochemistry and glycobiology, enzymes belonging to the families of glycosidases, glycosyltransferases (Gtfs), lipases, and, in the case of nucleoside and nucleotide analogues, also nucleoside phosphorylases (NPs) are the preferred choices as catalysts. In this Account, on the basis of our expertise, we will discuss the recent biocatalytic and sustainable approaches that have been employed to synthesize carbohydrate-based drugs, ranging from antiviral nucleosides and nucleotides to antibiotics with antibacterial activity and glycoconjugates such as neoglycoproteins (glycovaccines, GCVs) and glycodendrimers that are considered as very promising tools against viral and bacterial infections. In the first section, we will report the use of NPs and N-deoxyribosyltransferases for the development of transglycosylation processes aimed at the synthesis of nucleoside analogues with antiviral activity. The use of deoxyribonucleoside kinases and hydrolases for the modification of the sugar moiety of nucleosides has been widely investigated. Next, we will describe the results obtained using enzymes for the chemoenzymatic synthesis of glycoconjugates such as GCVs and glycodendrimers with antibacterial and antiviral activity. In this context, the search for efficient enzymatic syntheses represents an excellent strategy to produce structure-defined antigenic or immunogenic oligosaccharide analogues with high purity. Lipases, glycosidases, and Gtfs have been used for their preparation. Interestingly, many authors have proposed the use Gtfs originating from the biosynthesis of natural glycosylated antibiotics such as glycopeptides, macrolides, and aminoglycosides. These have been used in the chemoenzymatic semisynthesis of novel antibiotic derivatives by modification of the sugar moiety linked to their complex scaffold. These contributions will be described in the last section of this review because of their relevance in the fight against the spreading phenomenon of antibiotic resistance. In this context, the pioneering in vivo synthesis of novel derivatives obtained by genetic manipulation of producer strains (combinatorial biosynthesis) will be shortly described as well. All of these strategies provide a useful and environmentally friendly synthetic toolbox. Likewise, the field represents an illustrative example of how biocatalysis can contribute to the sustainable development of complex glycan-based therapies and how problems derived from the integration of natural tools in synthetic pathways can be efficiently tackled to afford high yields and selectivity. The use of enzymatic synthesis is becoming a reality in the pharmaceutical industry and in drug discovery to rapidly afford collections of new antibacterial or antiviral molecules with improved specificity and better metabolic stability

    Chemoenzymatically synthesized ganglioside GM3 analogues with inhibitory effects on tumor cell growth and migration

    Get PDF
    Ganglioside GM3, belonging to glycosphingolipid family, has been known as tumor-associated carbohydrate antigen on several types of tumor. Many studies have revealed that GM3 plays a role in cell proliferation, adhesion and differentiation, which is crucial in the process of cancer development. In the present study, we firstly synthesized novel mannose-containing GM3 analogues by enzymatic hydrolysis and chemical procedures. Then the antiproliferative activity of the novel analogues along with galactose-containing analogues we prepared previously was investigated and the data demonstrated that these analogues exhibited antiproliferative effect on K562 and HCT116 cells. Finally, the influence of these analogues on tumor cell migration was studied on B16, B16-F10 and HCCLM3 cells by wound healing test, because the migration of tumor cells represents one of the relevant factors in assessing the malignancy of cancer. This study could lay the foundation for optimizing leading compounds and provide valuable information for finding new antitumor drugs for cancer therapy

    Glycovaccine Design: Optimization of Model and Antitubercular Carrier Glycosylation via Disuccinimidyl Homobifunctional Linker

    Get PDF
    Conjugation via disuccinimidyl homobifunctional linkers is reported in the literature as a convenient approach for the synthesis of glycoconjugate vaccines. However, the high tendency for hydrolysis of disuccinimidyl linkers hampers their extensive purification, which unavoidably results in side-reactions and non-pure glycoconjugates. In this paper, conjugation of 3-aminopropyl saccharides via disuccinimidyl glutarate (DSG) was exploited for the synthesis of glycoconjugates. A model protein, ribonuclease A (RNase A), was first considered to set up the conjugation strategy with mono- to tri- mannose saccharides. Through a detailed characterization of synthetized glycoconjugates, purification protocols and conjugation conditions have been revised and optimized with a dual aim: ensure high sugar-loading and avoid the presence of side reaction products. An alternative purification approach based on hydrophilic interaction liquid chromatography (HILIC) allowed the formation of glutaric acid conjugates to be avoided, and a design of experiment (DoE) approach led to optimal glycan loading. Once its suitability was proven, the developed conjugation strategy was applied to the chemical glycosylation of two recombinant antigens, native Ag85B and its variant Ag85B-dm, that are candidate carriers for the development of a novel antitubercular vaccine. Pure glycoconjugates (≥99.5%) were obtained. Altogether, the results suggest that, with an adequate protocol, conjugation via disuccinimidyl linkers can be a valuable approach to produce high sugar-loaded and well-defined glycovaccines

    An enzymatic flow-based preparative route to vidarabine

    Get PDF
    The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl–agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides

    Effect of glycosylation on the affinity of the MTB protein Ag85B for specific antibodies: towards the design of a dual-acting vaccine against tuberculosis

    Get PDF
    Background: To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. Results: Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. Conclusions: Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens

    Immobilized enzyme reactors based on nucleoside phosphorylases and 2′-deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues

    Get PDF
    In this work, a mono- and a bi-enzymatic analytical immobilized enzyme reactors (IMERs) were developed as prototypes for biosynthetic purposes and their performances in the in-flow synthesis of nucleoside analogues of pharmaceutical interest were evaluated. Two biocatalytic routes based on nucleoside 2′-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT) and uridine phosphorylase from Clostridium perfrigens (CpUP)/purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) were investigated in the synthesis of 2′-deoxy, 2′,3′-dideoxy and arabinonucleoside derivatives. LrNDT-IMER catalyzed the synthesis of 5-fluoro-2′-deoxyuridine and 5-iodo-2′-deoxyuridine in 65–59% conversion yield, while CpUP/AhPNP-IMER provided the best results for the preparation of arabinosyladenine (60% conversion yield). Both IMERs proved to be promising alternatives to chemical routes for the synthesis of nucleoside analogues. The developed in-flow system represents a powerful tool for the fast production on analytical scale of nucleosides for preliminary biological tests
    • …
    corecore